游客发表
机械之心编译
作者:Sebastian Raschka
编纂:Panda W
用对于了措施,修正行代减速 PyTorch 磨炼 ,码P磨炼无意也不是倍提那末重大。
克日,速低术关深度学习规模驰名钻研者 、技键Lightning AI 的修正行代首席家养智能教育者 Sebastian Raschka 在 CVPR 2023 上宣告了主题演讲「Scaling PyTorch Model Training With Minimal Code Changes」 。
为了能与更多人分享钻研下场 ,码P磨炼Sebastian Raschka 将演讲整理成一篇文章 。倍提文章品评辩说了若何在最小代码变更的速低术关情景下扩展 PyTorch 模子磨炼,并表明重点是技键运用混合精度(mixed-precision)措施以及多 GPU 磨炼方式 ,而不是修正行代低级机械优化。
文章运用视觉 Transformer(ViT)作为根基模子,码P磨炼ViT 模子在一个根基数据集上重新开始,倍提经由约 60 分钟的速低术关磨炼,在测试集上取患了 62% 的技键精确率。
GitHub 地址:https://github.com/rasbt/cvpr2023
如下是文章原文:
构建基准
在接下来的部份中